skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Steffen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Training schools focused on modeling solid Earth responses to ice mass changes offer lessons on how early-career scientists can build professional networks and learn skills to solve complex problems. 
    more » « less
    Free, publicly-accessible full text available July 25, 2026
  2. Free, publicly-accessible full text available August 13, 2026
  3. Free, publicly-accessible full text available July 23, 2026
  4. Free, publicly-accessible full text available May 21, 2026
  5. Free, publicly-accessible full text available May 8, 2026
  6. Free, publicly-accessible full text available May 31, 2026
  7. ABSTRACT Trichoptera (caddisflies) is one of the most species‐rich orders of aquatic insects. Species of caddisflies cover a broad ecological diversity as exemplified by various uses of underwater silk secretions. Diversity of silk use generally aligns with the evolution of major caddisfly lineages, specifically at the subordinal level: Annulipalpia (retreat makers) and Integripalpia (cocoon and tube‐case makers). However, silk use within suborders differs for a few exceptional species in these clades. In this study, we provide the first whole genome assemblies and annotations for two unusual Integripalpia species:Limnocentropus insolitus, whose hard tube‐case is anchored to boulders by a rigid, elongated silken stalk, andPhryganopsyche brunneawhich builds a “floppy” cylindrical case that lacks the typical robustness of tube‐cases. Its texture rather resembles that of the flexible retreats built by Annulipalpia. Using the two high‐quality genome assemblies, we identified and annotated the major silk gene,h‐fibroin, and compared its amino acid composition across various groups, including retreat, cocoon, and tube‐case makers. Our phylogenetic analysis confirmed the phylogenetic position of the two species in the tube‐case‐making clade. The major silk gene ofL. insolitusshows a similar amino acid composition to other tube‐case‐making species. In contrast, the amino acid composition ofP. brunnearesembles that of retreat‐making species, in particular with regard to the high content of proline. This is consistent with the hypothesis that proline could be linked to enhanced extensibility of silk fibers. Taken together, our results underscore the role of silk genes in shaping the evolutionary ecology of retreat‐ and tube‐case‐making in caddisflies. 
    more » « less
    Free, publicly-accessible full text available May 19, 2026
  8. Free, publicly-accessible full text available March 1, 2026
  9. Synthetic biology aims to expand the genetic code by increasing cellular information storage and retrieval. A recent advance is the dTAT1-dNaM unnatural base pair, which is more photo- and thermostable than dTPT3-dNaM while maintaining high efficiency and fidelity in vitro and in vivo. However, the photophysics and cytotoxicity behavior of dTAT1 under UV light have not been investigated. We demonstrate that dTAT1 populates the triplet state upon 390 nm excitation but exhibits minimal cytotoxicity in cells. Analysis of reactive oxygen species indicates that dTAT1 produces a low singlet oxygen quantum yield of 17% while it generates superoxide, a less harmful reactive oxygen species. Its triplet lifetime is 2.7 times shorter than that of dTPT3, contributing to its lower photocytotoxicity. These findings highlight the potential of dTAT1 for safe genetic code expansion and therapeutic applications, providing valuable insights for designing next-generation unnatural nucleosides with minimal impact on cellular health. 
    more » « less
    Free, publicly-accessible full text available May 29, 2026
  10. Abstract The photoATRP of methyl acrylate (MA) is investigated using riboflavin (RF) and CuBr2/Me6TREN as a dual catalyst system under green LED irradiation (λ ≈ 525 nm). Both RF and CuBr2/Me6TREN enhanced oxygen tolerance, enabling effective ATRP in the presence of residual oxygen. High molar mass polymers (up toMn ≈ 129 000 g·mol−1) with low dispersity (Đ≤ 1.16) are prepared, and chain‐end fidelity is confirmed through successful chain extension. The molecular masses of the obtained polymer increased linearly with conversion and showed high initiation efficiency. Mechanistic studies by laser flash photolysis reveal that the predominant activator generation mechanism is reductive quenching of RF by Me6TREN (83%, under [CuBr2]/[Me6TREN] = 1/3 condition), supported by polymerization kinetics and thermodynamic calculations. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026